

Curricular Unit Form (FUC)

Course:	FIRST CYCLE IN MECHANICAL ENGINEERING							
Curricular Unit (UC)	Cold Production						Mandatory	
						Opt	ional	X
Scientific Area:	Energy and Control Systems							
Year: 3°	Semester: 1°	ECTS:4,0		Tot	Total Hours: 3,0			
Contact Hours:	T:	TP: 45,0	PL:	S:	0	T:	TT:	
Professor in charge		Academic Degree /Title			Position			
António Manuel Mat	Licenciado			Professor Coordenador				
T- Theoretical; TP – Theory and practice; PL – Laboratory; S – Seminar; OT – Tutorial; TT – Total of contact hours								

Entry into Force Semester: Winter	Academic Year: 2010/2011
-----------------------------------	--------------------------

Objectives of the curricular unit and competences (max. 1000 characters)

Explain and characterize different energetic and environmental concepts, that enable one to choose and design the most efficient refrigerant system according to thermodynamic principles
Acquire and apply the thermodynamic principles of industrial refrigeration, design and select safety and control equipment for industrial facilities, on an environmental energy optimization view.
Be able to plan the assemblage of a refrigeration system, including the fundamental components, according to the base concept, performing all the mathematical calculations given the dimensions and complexity of the system.

4.- Be able to assess, compare, analyze and validate refrigeration systems, having in mind it's optimization in terms of environment and energy.

4.- Be able to work with diagrams and technical charts to properly select equipment, satisfying the need for system performance.

Syllabus (max. 1000 characters)

- 1. Standard vapour compression cycle. Multistage systems with flash gas removal. Evaporators with different temperatures in direct-expansion
- 2. Refrigerant plants. Pressure drops
- 3. Mechanically pumped liquid recirculation systems. Low pressure liquid / vapour receivers. Flooded Evaporators with surge drum. Flash tank intercooler
- 4. Condensers. Air-cooled, Water-cooled and Evaporatives. Heat rejection ratio. Water Cooling Towers. Evaporators. Defrosting systems
- 5. Refrigerants. R_{134a}; R_{404A}; R_{410A a} NH₃
- 6. Absorption Systems. Solution and Sorbent. Rectification. Simple and double-effect Chillers LiBr/H₂O; NH₃/H₂O. Domestic absorption refrigerant cycle NH₃/H₂O/H₂.

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Demonstration of the syllabus coherence with curricular unit's objectives (max. 1000 characters)

To solve problems that range all of the units' contents, resourcing to abacus and technical charts is the best way according to thermodynamic principles e heat transfer referred to industrial refrigeration

Teaching methodologies (including evaluation) (max. 1000 characters)

The resource to educational equipment. Theoretical lectures, supported by multimedia material, slides abacus and charts.

Practical classes are used to solve problems that range all of the unit's program contents, resourcing to abacus and technical charts.

The assessment methodology consists of 1 test or a final exam.

Demonstration of the teaching methodologies coherence with the curricular unit's objectives (max. 3000 characters)

To solve problems with abacus and charts is the best way to properly perform components, satisfying the need for system optimization.

Main Bibliography (max. 1000 characters)

DOSSAT, Principles of Refrigeration ASHRAE. Handbooks Fundamentals, ASHRAE. Handbooks Refrigeration. GOSNEY,W., Industrial Refrigeration