Ficha de Unidade Curricular (FUC)

- 1. Caracterização da Unidade Curricular.
- 1.1. Designação da unidade curricular

Fundamentos de Potência Pulsada - FPP

1.2. Sigla da área científica em que se insere

ΕE

1.3. Duração

1 Semestre

1.4. Horas de trabalho

162h

1.5. Horas de contacto

T:22,5 TP: 22,5 PL:22,5

1.6. ECTS

6

1.7. Observações

opção

2. Docente responsável e respetiva carga letiva na unidade curricular (preencher nome completo)

Luís Manuel dos Santos Redondo	3h

3. Outros docentes e respetivas cargas letivas na unidade curricular

Hiren Canacsinh	1,5

- **4.** Objetivos da aprendizagem (conhecimentos, aptidões e competências a desenvolver pelos estudantes)
 - Perceber a diferença entre a forma de entregar energia da potência pulsada e as formas tradicionais em corrente contínua ou alternada.
 - Projetar circuitos de geração de impulsos de altas-tensões, baseados em armazenamento de energia em condensadores e em bobinas, com semicondutores de potência
 - Conhecer os requisitos impostos pelas diferentes aplicações aos gerados pulsados, considerando tipos de carga resistivo, capacitivo e indutivo

5. Conteúdos programáticos

- História e conceito da ciência e tecnologia da Potência Pulsada.
- Caracterização dum circuito de geração de impulsos. Geração de impulsos com base em armazenamento de energia capacitivo e indutivo.
- Geração de impulsos com base em conversores dc-dc, transformadores, linhas de transmissão e circuitos multiplicadores de tensão. Gerador de Marx e multiplicador indutivo.
- Interruptores baseados em semicondutores para geração de impulsos. Geração de impulsos com larguras de microsegundos e nanosegundos.
- Aplicações de Potência Pulsada, requisitos impostos pelas cargas aos geradores de impulsos.

6. Demonstração da coerência dos conteúdos programáticos com os objetivos da unidade curricular

Considerando que as competências principais adquiridas nesta unidade curricular são a capacidade de projetar circuitos para gerar impulsos de alta tensão considerando diferentes tipos de carga, função da aplicação, é necessário estudar a tecnologia, o funcionamento e características dos várias técnicas para geração de impulsos de alta tensão bem como as diferentes aplicações industriais nas áreas do ambiente, saúde, alimentação e materiais.

Saber distinguir os métodos baseados em armazenamento de energia em condensadores ou bobinas é fundamental.

7. Metodologias de ensino (avaliação incluída)

Nas aulas teóricas são leccionados os conteúdos programáticos, sendo apresentados casos práticos. Nas aulas teórico-práticas são realizados exercícios de aplicação com grande intervenção dos alunos.

Nas aulas de laboratório são aplicadas as competências adquiridas com a realização de trabalhos práticos em grupo.

A avaliação consiste na realização de dois trabalhos individuais, T1 e T2, e sua discussão (onde cada trabalho vale 25% da nota e a nota mínima é de 10 valores), e um exame final, com nota igual ou superior a 10 valores, que vale 50% da nota.

(Média nota final = T1*0,25%+T2*0,25%+Exame*0,5%)

8. Demonstração da coerência das metodologias de ensino com os objetivos de aprendizagem da unidade curricular

As competências principais adquiridas nesta unidade curricular são a capacidade de projetar circuitos para gerar impulsos de alta tensão considerando diferentes tipos de carga, função da aplicação, é necessário estudar a tecnologia, o funcionamento e características dos várias técnicas para geração de impulsos de alta tensão bem como as diferentes aplicações industriais nas áreas do ambiente, saúde, alimentação e materiais.

Nas aulas teóricas são apresentadas as características fundamentais, tecnologia e funcionamento dos vários métodos para gerar impulsos de alta tensão, assim com as características dos diferentes tipos de aplicações nas áreas do ambiente, saúde, alimentação e engenharia de materiais.

São realizados dois trabalhos, com componente teórica e experimental, um sobre a tecnologia e outro sobre as aplicações. Na execução dos trabalhos é também realizada uma visita de

estudo, a uma empresa que trabalha nesta área, para se ver implementações industriais da tecnologias e aplicações. Cada trabalho vale 25% da nota final, com nota mínima de 10 valores cada um.

Nas aulas teórico-práticas são propostos aos alunos exercícios de aplicação e técnicas de simulação dos circuitos estudados.

As aulas laboratoriais acompanham o programa teórico, permitindo assim ao aluno complementar os conhecimentos adquiridos. São efectuados exercícios, bem como trabalhos de aplicação:

- 1) Gerador de Marx, T1;
- 2) Aplicações de Campos Eléctricos Pulsados na alimentação, T2.

Na componente laboratorial é avaliado o dimensionamento dos trabalhos apresentado para a realização dos mesmos, os relatórios e discussão dos trabalhos. A avaliação prática tem um peso de 50% e nota mínima de 10 valores.

No final existe um exame que vale 50% da nota, a nota final mínima é de 10 valores.

Nota Final = T1×25%+T2*25%+Exame50%

9. Bibliografia principal

Solid State Pulsed Power Electronics
Luis Redondo, Fernando A. Silva, in Muhammad Rashid et al, editors: Power
Electronics Handbook 3ed, 2010, Butterworth-Hinemann Publishing, Elsevier,

ISBN # 9780123820365, chapter 26, pp 669-710.

Foundations of Pulsed Power Technology,

Jane Lehr, Pralhad Ron

ISBN: 978-1-118-62839-3 Aug 2017, Wiley-IEEE Press