

Ficha de Unidade Curricular (FUC)

Curso:	MESTRADO EM ENGENHARIA MECÂNICA								
Unidade Curricular	Instalações Técnicas Especiais						Obrigatória :		X
							Opci	onal	
Área Científica:	Termofluidos e Energia								
Ano: 2°	Semestre: 1°	ECTS: 6,0 Total			tal de l	Horas	ras: 162		
Horas Contacto:	T:	TP: 67,5	PL:	S:	OT:		TT: 67,5		
Professor Responsável		Grau/Título		Categoria					
Cláudia Sofia Séneca da L. Casaca		Doutor			Prof. Adjunto				

T- Teórica ; TP - Teórico-prática ; PL - Prática Laboratorial ; S - Seminário ; OT - Orientação Tutorial ; TT - Total de horas de Contacto

Entrada em Vigor	Semestre: Inverno	Ano Lectivo: 2019/2020
------------------	-------------------	------------------------

Objectivos da unidade curricular e competências a desenvolver (max. 1000 caracteres)

Objectivos da Unidade Curricular:

- Conhecer os principais sistemas de AVAC e os respectivos equipamentos.
- Adoptar os procedimentos adequados ao estudo das necessidades energéticas dos edifícios.
- Saber dimensionar as capacidades requeridas para os sistemas de AVAC e seus componentes.
- Saber elaborar um estudo económico comparativo das soluções tendo em vista custos de investimento versus custos de exploração/manutenção.

Competências a adquirir na Unidade Curricular:

- Pretende-se dotar os alunos de competências adequadas à elaboração de estudos e projectos de instalações técnicas de climatização em edifícios.

Conteúdos programáticos (max. 1000 caracteres)

- 1- Guias de projectos de AVAC.
- 2- Manuais e literatura da especialidade.
- 3- Introdução aos sistemas de climatização e ventilação em edifícios.
- 4- Balanço térmico de energia em edifícios com o respectivo cálculo das cargas térmicas.
- 5- Centrais de produção e distribuição de energia térmica.
- 6- Equipamentos a incorporar em sistemas de AVAC.
- 7- Unidades de tratamento de Ar (UTAs e UTAN's).

FUC: Instalações Técnicas Especiais	Página 1/4

- 8- Selecção e dimensionamento dos equipamentos anteriormente referidos.
- 9- Elaboração de um anteprojecto contemplando os conhecimentos adquiridos na UC.
- 10- Estudo técnico-económico de diversas soluções de climatização.

Demonstração da coerência dos conteúdos programáticos com os objectivos da unidade curricular (max. 1000 caracteres)

- 1- Para cumprir os objectivos de base o aluno deve:
- Saber dimensionar a capacidade térmica requerida de um sistema de AVAC e seus componentes. Para o efeito serão ensinadas técnicas de cálculo de cargas térmicas, bem como de cálculo de potências e consumos energéticos de equipamentos de AVAC.
- Saber efectuar o estudo económico, comparativo das diversas soluções de climatização tendo em vista custos de investimento versus custos exploração/manutenção. Para o efeito serão leccionadas técnicas de análise económica de investimentos.
- 2- Relativamente às competências que o aluno deve adquirir:
- 2.1 Sistemas separados de expansão directa
- 2.2 Centrais de produção de água arrefecida/aquecida
- 2.3 Sistemas de distribuição de água arrefecida/aquecida a quatro tubos (variável).
- 2.4 Unidades terminais de tratamento de ar.
- 2.5 Unidades centrais de tratamento de ar
- 3- Adquirir os conhecimentos básicos para poder iniciar uma actividade profissional em empresas do sector.

Metodologias de ensino (avaliação incluída) (max. 1000 caracteres)

A unidade curricular é de natureza teórico-prática.

A metodologia de ensino seguida, é mista:

- Compreende uma parte teórica numa base expositiva, prevendo-se aulas de transmissão de conhecimento teórico-práticos.
- Outra parte é prática, na qual haverá o acompanhamento do trabalho dos alunos, na utilização de ferramentas informáticas.

Avaliação:

Dois testes individuais. Na falta de aprovação nestes testes, haverá um exame final.

Quatro trabalhos, desenvolvidos pelos alunos, ao longo do semestre lectivo. Que constituirão no seu conjunto a base de um anteprojecto de um sistema de AVAC.

A classificação final será ponderada valendo 70% para os quatro trabalhos e 30% para os testes/exame. Em nenhuma das fases poderá haver uma nota inferior a dez valores.

Demonstração da coerência das metodologias de ensino com os objectivos da unidade curricular (max. 3000 caracteres)

Os objectivos de base coincidem de um modo directo com as metodologias de ensino e avaliação, como a seguir se enumera:

- 1- Nas aulas teóricas, descrevem-se e qualificam-se os diferentes sistemas e equipamentos de AVAC.
- 2- O aluno através da pesquisa adequada, tem que conhecer com profundidade as bases climáticas nacionais e em especial as do local objecto do seu estudo e decidir pela escolha adequada dos dados climáticos em que se basearão os seus cálculos.
- 3- Durante a actividade lectiva, com a utilização de programas informáticos adoptados, deverão ser identificadas de modo objectivo todas as características construtivas dos locais a estudar, índices de ocupação e a sua correlação directa ou indirecta com todas as fontes de calor, quer incidentes quer desenvolvidas no interior do edifício objecto da avaliação.
- 4- A selecção dos equipamentos principais resultante dos cálculos efectuados, será real identificandose com toda a gama de produtos disponíveis no mercado.
- 5- As situações de funcionamento das diversas soluções comparativas para o caso real em estudo no processo de avaliação, permitirão avaliar de forma concisa diferentes custos de exploração para as soluções em análise.
- 6- Como complemento de todos os resultados obtidos durante o período lectivo, os alunos terão de apresentar esquemas de princípio da instalação, memória descritiva e justificativa, folhas de cálculo, que constituirão a base do anteprojecto a apresentar para avaliação da parte prática.
- 7- A avaliação da parte teórica incidirá sobre toda a matéria exposta nas aulas teóricas e práticas.

Bibliografia Principal (max. 1000 caracteres)

FUC: Instalações Técnicas Especiais Página 3/4

ASHRAE Handbook manuals.

Carrier air conditioning manual.

António José da Anunciada Santos. AVAC, Um Manual de Apoio: Fundamentos. Editora Engebook.

António José da Anunciada Santos. AVAC, Um Manual de Apoio: Complementos. Editora Engebook.

Temperaturas exteriores de projecto e números de graus dias, LNEC/IM Lisboa - 2ª edição 1995.

Normais climatológicas para Portugal 1951-1980 IM.

Estatísticas climatológicas em Portugal Continental VOLUME 1 - Temperaturas do ar (quantis) 1951-1980 IM.

Coeficientes de transmissão térmica de elementos da envolvente dos edifícios 2006 (ITE 50; LNEC).

DL 118/2013 e respectivas portarias (SCE).

Procedure For Determining Heating and Cooling Loads for Computerizing Energy Calculations – ASHRAE.

Suporte informático:

- Carrier. Software Systems E20 II Versão a disponibilizar.
- Design Building energy plus.
- Chiller selection program de diferentes marcas correntes no mercado (Carrier, Trane, Climaveneta, entre outros).
- Software de desenho assistido por computador em 2D e 3D.